Original language | English |
---|---|
Journal | Environ. Pollut. |
Volume | 290 |
DOIs | |
Publication status | Published (VoR) - 2021 |
Keywords
- Biodiesel
- Cold-start
- Engine warm-up
- NO2 emissions
- NO2/NOx ratio
- NOx emissions
- Automobile manufacture
- Blending
- Diesel engines
- Nitrogen oxides
- Bio-diesel blends
- Emissions regulations
- NO $-2$
- NO2 emission
- Transportation sector
- Vehicle manufacturers
- biodiesel
- nitrogen dioxide
- nitrogen oxide
- biofuel
- gasoline
- diesel engine
- emission control
- exhaust emission
- nitrogen oxides
- Article
- carbon footprint
- coconut
- exhaust gas
- high temperature procedures
- low temperature procedures
- pressure and tension
- urban area
- cold
- Biofuels
- Cold Temperature
- Gasoline
- Nitrogen Dioxide
- Vehicle Emissions
Fingerprint
Dive into the research topics of 'Analysis of cold-start NO2 and NOx emissions, and the NO2/NOx ratio in a diesel engine powered with different diesel-biodiesel blends: Environmental Pollution'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Environ. Pollut., Vol. 290, 2021.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Analysis of cold-start NO2 and NOx emissions, and the NO2/NOx ratio in a diesel engine powered with different diesel-biodiesel blends
T2 - Environmental Pollution
AU - Zare, A.
AU - Stevanovic, S.
AU - Jafari, M.
AU - Verma, P.
AU - Babaie, M.
AU - Yang, L.
AU - Rahman, M.M.
AU - Ristovski, Z.D.
AU - Brown, R.J.
AU - Bodisco, T.A.
N1 - Cited By :16 Export Date: 17 February 2023 CODEN: ENPOE Correspondence Address: Zare, A.; School of Engineering, Australia; email: [email protected] Chemicals/CAS: nitrogen dioxide, 10102-44-0; nitrogen oxide, 11104-93-1; gasoline, 86290-81-5; Biofuels; Gasoline; Nitrogen Dioxide; Vehicle Emissions Funding details: Australian Research Council, ARC, LP110200158 Funding text 1: The authors would like to acknowledge the support of, Prof. Jochen Mueller, Mr. Andrew Elder (DynoLog Pty Ltd), Mr. Andrew Banks, Mr. Noel Hartnett, and ARC Linkage (LP110200158) in this research. References: Aghbashlo, M., Tabatabaei, M., Khalife, E., Roodbar Shojaei, T., Dadak, A., Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide (2018) Energy, 149, pp. 967-978. , (Accessed 15 April 2018); Aghbashlo, M., Peng, W., Tabatabaei, M., Kalogirou, S.A., Soltanian, S., Hosseinzadeh-Bandbafha, H., Mahian, O., Lam, S.S., Machine learning technology in biodiesel research: a review (2021) Prog. Energy Combust. Sci., 85, p. 100904. , (Accessed 1 July 2021); Alvarez, R., Weilenmann, M., Favez, J.-Y., Evidence of increased mass fraction of NO2 within real-world NOx emissions of modern light vehicles — derived from a reliable online measuring method (2008) Atmos. Environ., 42 (19), pp. 4699-4707. , (Accessed 1 June 2008); Balamurugan, G., Gowthaman, S., A review on split injection performances in DI diesel engine with different injection strategies and varying EGR using biodiesel as fuel (2021) Mater. Today: Proceedings, , (Accessed 20 February 2021); Bodisco, T., Brown, R.J., Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine (2013) Energy, 52, pp. 55-65; Bodisco, T., Zare, A., Practicalities and driving dynamics of a real driving emissions (RDE) Euro 6 regulation homologation test (2019) Energies, 12 (12), p. 2306; Bodisco, T., Low Choy, S., Brown, R.J., A Bayesian approach to the determination of ignition delay (2013) Appl. Therm. Eng., 60 (1), pp. 79-87. , (Accessed 2 October 2013); Bodisco, T., Tröndle, P., Brown, R.J., Inter-cycle variability of ignition delay in an ethanol fumigated common rail diesel engine (2015) Energy, 84, pp. 186-195; Boezen, H.M., van der Zee, S.C., Postma, D.S., Vonk, J.M., Gerritsen, J., Hoek, G., Brunekreef, B., Schouten, J.P., Effects of ambient air pollution on upper and lower respiratory symptoms and peak expiratory flow in children (1999) Lancet, 353 (9156), pp. 874-878. , (Accessed 13 March 1999); Calle-Asensio, A., Hernández, J.J., Rodríguez-Fernández, J., Lapuerta, M., Ramos, A., Barba, J., Effect of advanced biofuels on WLTC emissions of a Euro 6 diesel vehicle with SCR under different climatic conditions (2021) Int. J. Engine Res.; Cao, Y., Operation and cold start mechanisms of internal combustion engines with alternative fuels (2007), SAE Technical Paper0148-7191; Chai, M., Lu, M., Liang, F., Tzillah, A., Dendramis, N., Watson, L., The use of biodiesel blends on a non-road generator and its impacts on ozone formation potentials based on carbonyl emissions (2013) Environ. Pollut., 178, pp. 159-165. , (Accessed 1 July 2013); Cheng, Y., Li, S.-M., Liggio, J., Hayden, K., Han, Y., Stroud, C., Chan, T., Poitras, M.-J., The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine (2017) Environ. Pollut., 230, pp. 72-80. , (Accessed 1 November 2017); Datta, A., Mandal, B.K., A comprehensive review of biodiesel as an alternative fuel for compression ignition engine (2016) Renew. Sustain. Energy Rev., 57, pp. 799-821. , (Accessed 1 May 2016); Worldwide emissions standards-Passenger cars and light duty vehicles (2019), https://www.delphi.com/innovations, Delphi; Nitrogen oxides (NOx), why and how they are controlled (1999), EPA 456/F-99-006R; Fontaras, G., Kousoulidou, M., Karavalakis, G., Tzamkiozis, T., Pistikopoulos, P., Ntziachristos, L., Bakeas, E., Samaras, Z., Effects of low concentration biodiesel blend application on modern passenger cars. Part 1: feedstock impact on regulated pollutants, fuel consumption and particle emissions (2010) Environ. Pollut., 158 (5), pp. 1451-1460. , (Accessed 1 May 2010); Giakoumis, E.G., Rakopoulos, C.D., Dimaratos, A.M., Rakopoulos, D.C., Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends (2012) Prog. Energy Combust. Sci., 38 (5), pp. 691-715. , (Accessed 1 October 2012); Giakoumis, E.G., Rakopoulos, C.D., Rakopoulos, D.C., Assessment of NOx emissions during transient diesel engine operation with biodiesel blends (2014) J. Energy Eng., 140 (3), p. A4014004; Hadavi, S.A., Li, H., Andrews, G., Dizayi, B., Khalfan, A., Diesel cold start into congested real world traffic: comparison of diesel, B50, B100 for gaseous emissions (2013), SAE Technical Paper0148-7191; Heywood, J.B., Combustion Engine Fundamentals (1988), Estados Unidos 1a Edição; Hilliard, J.C., Wheeler, R.W., Nitrogen dioxide in engine exhaust (1979) SAE Trans., pp. 2343-2354; Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Khanali, M., Demirbas, A., A comprehensive review on the environmental impacts of diesel/biodiesel additives (2018) Energy Convers. Manag., 174, pp. 579-614. , (Accessed 15 October 2018); Hosseinzadeh-Bandbafha, H., Khalife, E., Tabatabaei, M., Aghbashlo, M., Khanali, M., Mohammadi, P., Roodbar Shojaei, T., Soltanian, S., Effects of aqueous carbon nanoparticles as a novel nanoadditive in water-emulsified diesel/biodiesel blends on performance and emissions parameters of a diesel engine (2019) Energy Convers. Manag., 196, pp. 1153-1166. , (Accessed 15 September 2019); Iwasaki, M., Shinjoh, H., A comparative study of “standard”,“fast” and “NO2” SCR reactions over Fe/zeolite catalyst (2010) Appl. Catal. Gen., 390 (1-2), pp. 71-77; Jafari, M., Verma, P., Bodisco, T.A., Zare, A., Surawski, N.C., Borghesani, P., Stevanovic, S., Brown, R.J., Multivariate analysis of performance and emission parameters in a diesel engine using biodiesel and oxygenated additive (2019) Energy Convers. Manag., 201, p. 112183. , (Accessed 1 December 2019); Joshi, A., Review of vehicle engine efficiency and emissions (2020) SAE International Journal of Engines; Khalife, E., Tabatabaei, M., Demirbas, A., Aghbashlo, M., Impacts of additives on performance and emission characteristics of diesel engines during steady state operation (2017) Prog. Energy Combust. Sci., 59, pp. 32-78. , (Accessed 1 March 2017); Khatibi, S.R., Karimi, S.M., Moradi-Lakeh, M., Kermani, M., Motevalian, S.A., Fossil energy price and outdoor air pollution: predictions from a QUAIDS model (2020) Biofuel Research Journal, 7 (3), p. 1205; Labeckas, G., Slavinskas, S., Pauliukas, A., The effect of rapeseed oil blending with ethanol on engine performance and exhaust emissions (2007) Journal of KONES, 14, pp. 331-338; Lapuerta, M., Armas, O., Rodríguez-Fernández, J., Effect of biodiesel fuels on diesel engine emissions (2008) Prog. Energy Combust. Sci., 34 (2), pp. 198-223. , (Accessed 1 April 2008); Lapuerta, M., Rodríguez-Fernández, J., García-Contreras, R., Effect of a glycerol-derived advanced biofuel –FAGE (fatty acid formal glycerol ester)– on the emissions of a diesel engine tested under the New European Driving Cycle (2015) Energy, 93, pp. 568-579. , (Accessed 15 December 2015); Li, H., Liu, S., Liew, C., Li, Y., Wayne, S., Clark, N., An investigation on the mechanism of the increased NO2 emissions from H2-diesel dual fuel engine (2018) Int. J. Hydrogen Energy, 43 (7), pp. 3837-3844; Liu, S., Li, H., Liew, C., Gatts, T., Wayne, S., Shade, B., Clark, N., An experimental investigation of NO2 emission characteristics of a heavy-duty H2-diesel dual fuel engine (2011) Int. J. Hydrogen Energy, 36 (18), pp. 12015-12024; Liu, Z., Yang, L., Song, E., Wang, J., Zare, A., Bodisco, T.A., Brown, R.J., Development of a reduced multi-component combustion mechanism for a diesel/natural gas dual fuel engine by cross-reaction analysis (2021) Fuel, 293, p. 120388. , (Accessed 1 June 2021); Lodi, F., Zare, A., Arora, P., Stevanovic, S., Jafari, M., Ristovski, Z., Brown, R.J., Bodisco, T., Engine performance and emissions analysis in a cold, intermediate and hot start diesel engine (2020) Appl. Sci., 10 (11), p. 3839; Lodi, F., Zare, A., Arora, P., Stevanovic, S., Jafari, M., Ristovski, Z., Brown, R.J., Bodisco, T., Combustion analysis of a diesel engine during warm up at different coolant and lubricating oil temperatures (2020) Energies, 13 (15), p. 3931; Lodi, F., Zare, A., Arora, P., Stevanovic, S., Verma, P., Jafari, M., Ristovski, Z., Bodisco, T., Characteristics of particle number and particle mass emissions of a diesel engine during cold-, warm-, and hot-start operation (2021), SAE Technical Paper; López, J.M., Jiménez, F., Aparicio, F., Flores, N., On-road emissions from urban buses with SCR+Urea and EGR+DPF systems using diesel and biodiesel (2009) Transport. Res. Transport Environ., 14 (1), pp. 1-5. , (Accessed 1 January 2009); Matthaios, V.N., Kramer, L.J., Sommariva, R., Pope, F.D., Bloss, W.J., Investigation of vehicle cold start primary NO2 emissions inferred from ambient monitoring data in the UK and their implications for urban air quality (2019) Atmos. Environ., 199, pp. 402-414. , (Accessed 15 February 2019); Mensink, C., De Vlieger, I., Nys, J., An urban transport emission model for the Antwerp area (2000) Atmos. Environ., 34 (27), pp. 4595-4602. , (Accessed 1 January 2000); Mera, Z., Fonseca, N., Casanova, J., López, J.-M., Influence of exhaust gas temperature and air-fuel ratio on NOx aftertreatment performance of five large passenger cars (2021) Atmos. Environ., 244, p. 117878. , (Accessed 1 January 2021); Mitchell, B.J., Zare, A., Bodisco, T.A., Nabi, M.N., Hossain, F.M., Ristovski, Z.D., Brown, R.J., Engine blow-by with oxygenated fuels: a comparative study into cold and hot start operation (2017) Energy, 140, pp. 612-624. , (Accessed 1 December 2017); Nabi, N., Zare, A., Hossain, M., Rahman, M.M., Stuart, D., Ristovski, Z., Brown, R., Formulation of new oxygenated fuels and their influence on engine performance and exhaust emissions (2015) Proceedings of the 2015 Australian Combustion Symposium, pp. 64-67. , The Combustion Institute Australia and New Zealand Section; Nabi, M.N., Zare, A., Hossain, F.M., Rahman, M.M., Bodisco, T.A., Ristovski, Z.D., Brown, R.J., Influence of fuel-borne oxygen on European Stationary Cycle: diesel engine performance and emissions with a special emphasis on particulate and NO emissions (2016) Energy Convers. Manag., 127, pp. 187-198; Nabi, M.N., Zare, A., Hossain, F.M., Bodisco, T.A., Ristovski, Z.D., Brown, R.J., A parametric study on engine performance and emissions with neat diesel and diesel-butanol blends in the 13-Mode European Stationary Cycle (2017) Energy Convers. Manag., 148, pp. 251-259; Nabi, M.N., Zare, A., Hossain, F.M., Ristovski, Z.D., Brown, R.J., Reductions in diesel emissions including PM and PN emissions with diesel-biodiesel blends (2017) J. Clean. Prod., 166, pp. 860-868. , (Accessed 10 November 2017); Pechout, M., Kotek, M., Jindra, P., Macoun, D., Hart, J., Vojtisek-Lom, M., Comparison of hydrogenated vegetable oil and biodiesel effects on combustion, unregulated and regulated gaseous pollutants and DPF regeneration procedure in a Euro 6 car (2019) Sci. Total Environ., 696, p. 133748. , (Accessed 15 December 2019); Praveena, V., Martin, M.L.J., A review on various after treatment techniques to reduce NOx emissions in a CI engine (2018) J. Energy Inst., 91 (5), pp. 704-720. , (Accessed 1 October 2018); Reiter, M.S., Kockelman, K.M., The problem of cold starts: a closer look at mobile source emissions levels (2016) Transport. Res. Transport Environ., 43, pp. 123-132; Roberts, A., Brooks, R., Internal combustion engine cold-start efficiency: a review of the problem, causes and potential solutions (2014) Energy Convers. Manag., 82, pp. 327-350; Roberts, A., Brooks, R., Shipway, P., Internal combustion engine cold-start efficiency: a review of the problem, causes and potential solutions (2014) Energy Convers. Manag., 82, pp. 327-350; Roy, M.M., Calder, J., Wang, W., Mangad, A., Diniz, F.C.M., Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends (2016) Appl. Energy, 180, pp. 52-65. , (Accessed 15 October 2016); Rößler, M., Velji, A., Janzer, C., Koch, T., Olzmann, M., formation of engine internal NO₂: measures to control the NO₂/NOX ratio for enhanced exhaust after treatment (2017) SAE International Journal of Engines, 10 (4), pp. 1880-1893; Stevanovic, S., Miljevic, B., Madl, P., Clifford, S., Ristovski, Z., Characterisation of a commercially available thermodenuder and diffusion drier for ultrafine particles losses (2015) Aerosol and Air Quality Research, 15 (1), pp. 357-363; Stevanovic, S., Vaughan, A., Hedayat, F., Salimi, F., Rahman, M.M., Zare, A., Brown, R.A., Ristovski, Z.D., Oxidative potential of gas phase combustion emissions - an underestimated and potentially harmful component of air pollution from combustion processes (2017) Atmos. Environ., 158, pp. 227-235. , (Accessed 1 June 2017); Targino, A.C., Krecl, P., Cipoli, Y.A., Oukawa, G.Y., Monroy, D.A., Bus commuter exposure and the impact of switching from diesel to biodiesel for routes of complex urban geometry (2020) Environ. Pollut., 263, p. 114601. , (Accessed 1 August 2020); Thang, P.Q., Muto, Y., Maeda, Y., Trung, N.Q., Itano, Y., Takenaka, N., Increase in ozone due to the use of biodiesel fuel rather than diesel fuel (2016) Environ. Pollut., 216, pp. 400-407. , (Accessed 1 September 2016); Tipanluisa, L., Fonseca, N., Casanova, J., López, J.-M., Effect of n-butanol/diesel blends on performance and emissions of a heavy-duty diesel engine tested under the World Harmonised Steady-State cycle (2021) Fuel, 302, p. 121204. , (Accessed 15 October 2021); Van, T.C., Zare, A., Jafari, M., Bodisco, T.A., Surawski, N., Verma, P., Suara, K., Stevanovic, S., Effect of cold start on engine performance and emissions from diesel engines using IMO-Compliant distillate fuels (2019) Environ. Pollut., 255, p. 113260; Vaughan, A., Stevanovic, S., Morrison, L.E., Pourkhesalian, A.M., Rahman, M.M., Zare, A., Miljevic, B., Bowman, R., Removal of organic content from diesel exhaust particles alters cellular responses of primary human bronchial epithelial cells cultured at an air-liquid interface (2015) J. Environ. Anal. Toxicol., 5 (5), p. 100316. , 1; Vaughan, A., Stevanovic, S., Banks, A.P., Zare, A., Rahman, M.M., Bowman, R.V., Fong, K.M., Yang, I.A., The cytotoxic, inflammatory and oxidative potential of coconut oil-substituted diesel emissions on bronchial epithelial cells at an air-liquid interface (2019) Environ. Sci. Pollut. Res., 26 (27), pp. 27783-27791; Verma, P., Stevanovic, S., Zare, A., Dwivedi, G., Chu Van, T., Davidson, M., Rainey, T., Ristovski, Z.D., An overview of the influence of biodiesel, alcohols, and various oxygenated additives on the particulate matter emissions from diesel engines (2019) Energies, 12 (10), p. 1987; Verma, P., Jafari, M., Zare, A., Pickering, E., Guo, Y., Osuagwu, C.G., Stevanovic, S., Ristovski, Z., Soot particle morphology and nanostructure with oxygenated fuels: a comparative study into cold-start and hot-start operation (2021) Environ. Pollut., 275, p. 116592. , (Accessed 15 April 2021); World Health Organization, Review of Evidence on Health Aspects of Air Pollution– (2013), REVIHAAP Project; Yang, L.-P., Bodisco, T.A., Zare, A., Marwan, N., Chu-Van, T., Brown, R.J., Analysis of the nonlinear dynamics of inter-cycle combustion variations in an ethanol fumigation-diesel dual-fuel engine (2019) Nonlinear Dynam., 95 (3), pp. 2555-2574; Yang, L.-P., Wang, L.-Y., Wang, J.-Q., Zare, A., Brown, R.J., Nonlinear dynamics of cycle-to-cycle variations in a lean-burn natural gas engine with a non-uniform pre-mixture (2021) Nonlinear Dynam., 104 (3), pp. 2241-2258. , (Accessed 1 May 2021); Yang, L., Zare, A., Bodisco, T.A., Nabi, N., Liu, Z., Brown, R.J., Analysis of cycle-to-cycle variations in a common-rail compression ignition engine fuelled with diesel and biodiesel fuels (2021) Fuel, 290, p. 120010. , (Accessed 15 April 2021); Ye, P., Boehman, A.L., Investigation of the impact of engine injection strategy on the biodiesel NOx effect with a common-rail turbocharged direct injection diesel engine (2010) Energy Fuel., 24 (8), pp. 4215-4225. , (Accessed 19 August 2010); Zare, A., Bodisco, T.A., Nabi, M.N., Hossain, F.M., Ristovski, Z.D., Brown, R.J., Engine performance during transient and steady-state operation with oxygenated fuels (2017) Energy Fuel., 31 (7), pp. 7510-7522. , (Accessed 20 July 2017); Zare, A., Bodisco, T., Nabi, N., Hossain, M., Rahman, M.M., Stuart, D., Ristovski, Z., Brown, R., Impact of Triacetin as an oxygenated fuel additive to waste cooking biodiesel: transient engine performance and exhaust emissions (2015) Proceedings of the 2015 Australian Combustion Symposium, pp. 48-51. , The Combustion Institute Australia and New Zealand Section; Zare, A., Nabi, M.N., Bodisco, T.A., Hossain, F.M., Rahman, M.M., Ristovski, Z.D., Brown, R.J., The effect of triacetin as a fuel additive to waste cooking biodiesel on engine performance and exhaust emissions (2016) Fuel, 182, pp. 640-649. , (Accessed 15 October 2016); Zare, A., Nabi, M.N., Bodisco, T.A., Hossain, F.M., Rahman, M.M., Chu Van, T., Ristovski, Z.D., Brown, R.J., Diesel engine emissions with oxygenated fuels: a comparative study into cold-start and hot-start operation (2017) J. Clean. Prod., 162, pp. 997-1008. , (Accessed 20 September 2017); Zare, A., Bodisco, T.A., Nabi, M.N., Hossain, F.M., Ristovski, Z.D., Brown, R.J., A comparative investigation into cold-start and hot-start operation of diesel engine performance with oxygenated fuels during transient and steady-state operation (2018) Fuel, 228, pp. 390-404. , (Accessed 15 September 2018); Zare, A., Bodisco, T.A., Verma, P., Jafari, M., Babaie, M., Yang, L., Rahman, M.M., Brown, R.J., Emissions and performance with diesel and waste lubricating oil: a fundamental study into cold start operation with a special focus on particle number size distribution (2020) Energy Convers. Manag., 209, p. 112604; Zare, A., Bodisco, T.A., Jafari, M., Verma, P., Yang, L., Babaie, M., Rahman, M.M., Stevanovic, S., Cold-start NOx emissions: diesel and waste lubricating oil as a fuel additive (2021) Fuel, 286, p. 119430. , (Accessed 15 February 2021); Zare, A., Brown, R.J., Bodisco, T., Ethanol fumigation and engine performance in a diesel engine (2021) Alcohol as an Alternative Fuel for Internal Combustion Engines, pp. 191-212. , Springer
PY - 2021
Y1 - 2021
KW - Biodiesel
KW - Cold-start
KW - Engine warm-up
KW - NO2 emissions
KW - NO2/NOx ratio
KW - NOx emissions
KW - Automobile manufacture
KW - Blending
KW - Diesel engines
KW - Nitrogen oxides
KW - Bio-diesel blends
KW - Emissions regulations
KW - NO $-2$
KW - NO2 emission
KW - Transportation sector
KW - Vehicle manufacturers
KW - biodiesel
KW - nitrogen dioxide
KW - nitrogen oxide
KW - biofuel
KW - gasoline
KW - diesel engine
KW - emission control
KW - exhaust emission
KW - nitrogen oxides
KW - Article
KW - carbon footprint
KW - coconut
KW - exhaust gas
KW - high temperature procedures
KW - low temperature procedures
KW - pressure and tension
KW - urban area
KW - cold
KW - Biofuels
KW - Cold Temperature
KW - Gasoline
KW - Nitrogen Dioxide
KW - Vehicle Emissions
U2 - 10.1016/j.envpol.2021.118052
DO - 10.1016/j.envpol.2021.118052
M3 - Article
SN - 0269-7491
VL - 290
JO - Environ. Pollut.
JF - Environ. Pollut.
ER -