TY - JOUR
T1 - AUQantO
T2 - Actionable Uncertainty Quantification Optimization in deep learning architectures for medical image classification
AU - Senousy, Zakaria
AU - Gaber, Mohamed Medhat
AU - Abdelsamea, Mohammed M.
N1 - Funding Information:
The authors would like to thank the anonymous reviewers for their invaluable feedback, which significantly contributed to enhancing the overall quality of the paper.
Publisher Copyright:
© 2023 The Author(s)
PY - 2023/10
Y1 - 2023/10
KW - Actionability
KW - Convolutional neural networks
KW - Deep learning
KW - Image classification
KW - Medical image analysis
KW - Uncertainty quantification
KW - XAI
UR - http://www.scopus.com/inward/record.url?scp=85169928222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85169928222&partnerID=8YFLogxK
UR - https://www.open-access.bcu.ac.uk/14826/
U2 - 10.1016/j.asoc.2023.110666
DO - 10.1016/j.asoc.2023.110666
M3 - Article
AN - SCOPUS:85169928222
SN - 1568-4946
VL - 146
JO - Applied Soft Computing
JF - Applied Soft Computing
M1 - 110666
ER -