TY - JOUR
T1 - Data-driven prediction of construction and demolition waste generation using limited datasets in developing countries
T2 - an optimized extreme gradient boosting approach
AU - Maged, Ahmed
AU - Elshaboury, Nehal
AU - Akanbi, Lukman
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature B.V. 2024.
PY - 2024/4/17
Y1 - 2024/4/17
KW - Bayesian optimization
KW - Construction and demolition waste
KW - Genetic algorithm
KW - Limited data
KW - Optimized machine learning model
KW - Particle swarm optimization
KW - Waste quantification
UR - http://www.scopus.com/inward/record.url?scp=85190651488&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85190651488&partnerID=8YFLogxK
U2 - 10.1007/s10668-024-04814-z
DO - 10.1007/s10668-024-04814-z
M3 - Article
AN - SCOPUS:85190651488
SN - 1387-585X
SP - 1
JO - Environment, Development and Sustainability
JF - Environment, Development and Sustainability
ER -