Detection of Dengue Disease Empowered with Fused Machine Learning

Mohammad Rustom Al Nasar, Iftikhar Nasir, Tamer Mohamed, Nouh Sabri Elmitwally, Mahmoud M. Al-Sakhnini, Tayba Asgher

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    1 Citation (SciVal)
    Original languageEnglish
    Title of host publicationInternational Conference on Cyber Resilience, ICCR 2022
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    ISBN (Electronic)9781665461221
    DOIs
    Publication statusPublished (VoR) - 2022
    Event2022 International Conference on Cyber Resilience, ICCR 2022 - Dubai, United Arab Emirates
    Duration: 6 Oct 20227 Oct 2022

    Publication series

    NameInternational Conference on Cyber Resilience, ICCR 2022

    Conference

    Conference2022 International Conference on Cyber Resilience, ICCR 2022
    Country/TerritoryUnited Arab Emirates
    CityDubai
    Period6/10/227/10/22

    Keywords

    • Dengue Fever (DF)
    • Dengue Hemorrhagic Fever (DHF)
    • Dengue Prediction
    • Prediction Fused Dengue Model (PFDM)

    Fingerprint

    Dive into the research topics of 'Detection of Dengue Disease Empowered with Fused Machine Learning'. Together they form a unique fingerprint.

    Cite this