EnSyth: A pruning approach to synthesis of deep learning ensembles

Besher Alhalabi, Mohamed Medhat Gaber, Shadi Basurra

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    3 Citations (SciVal)
    Original languageEnglish
    Title of host publication2019 IEEE International Conference on Systems, Man and Cybernetics, SMC 2019
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages3466-3473
    Number of pages8
    ISBN (Electronic)9781728145693
    DOIs
    Publication statusPublished (VoR) - Oct 2019
    Event2019 IEEE International Conference on Systems, Man and Cybernetics, SMC 2019 - Bari, Italy
    Duration: 6 Oct 20199 Oct 2019

    Publication series

    NameConference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
    Volume2019-October
    ISSN (Print)1062-922X

    Conference

    Conference2019 IEEE International Conference on Systems, Man and Cybernetics, SMC 2019
    Country/TerritoryItaly
    CityBari
    Period6/10/199/10/19

    Fingerprint

    Dive into the research topics of 'EnSyth: A pruning approach to synthesis of deep learning ensembles'. Together they form a unique fingerprint.

    Cite this