Feature engineering for improving robustness of crossover in symbolic regression

Aliyu Sani Sambo, R. Muhammad Atif Azad, Yevgeniya Kovalchuk, Vivek Padmanaabhan Indramohan, Hanifa Shah

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)
Original languageEnglish
Title of host publicationGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
PublisherAssociation for Computing Machinery
Pages249-250
Number of pages2
ISBN (Electronic)9781450371278
DOIs
Publication statusPublished (VoR) - 8 Jul 2020
Event2020 Genetic and Evolutionary Computation Conference, GECCO 2020 - Cancun, Mexico
Duration: 8 Jul 202012 Jul 2020

Publication series

NameGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion

Conference

Conference2020 Genetic and Evolutionary Computation Conference, GECCO 2020
Country/TerritoryMexico
CityCancun
Period8/07/2012/07/20

Keywords

  • Feature engineering
  • Genetic programming
  • Regression

Fingerprint

Dive into the research topics of 'Feature engineering for improving robustness of crossover in symbolic regression'. Together they form a unique fingerprint.

Cite this