Feature engineering for improving robustness of crossover in symbolic regression

Aliyu Sani Sambo, R. Muhammad Atif Azad, Yevgeniya Kovalchuk, Vivek Padmanaabhan Indramohan, Hanifa Shah

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    1 Citation (Scopus)
    Original languageEnglish
    Title of host publicationGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
    PublisherAssociation for Computing Machinery
    Pages249-250
    Number of pages2
    ISBN (Electronic)9781450371278
    DOIs
    Publication statusPublished (VoR) - 8 Jul 2020
    Event2020 Genetic and Evolutionary Computation Conference, GECCO 2020 - Cancun, Mexico
    Duration: 8 Jul 202012 Jul 2020

    Publication series

    NameGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion

    Conference

    Conference2020 Genetic and Evolutionary Computation Conference, GECCO 2020
    Country/TerritoryMexico
    CityCancun
    Period8/07/2012/07/20

    Keywords

    • Feature engineering
    • Genetic programming
    • Regression

    Fingerprint

    Dive into the research topics of 'Feature engineering for improving robustness of crossover in symbolic regression'. Together they form a unique fingerprint.

    Cite this