Fuzzy-Based Fusion Model for β-Thalassemia Carriers Prediction Using Machine Learning Technique

Muhammad Ibrahim, Sagheer Abbas*, Areej Fatima, Taher M. Ghazal, Muhammad Saleem, Meshal Alharbi, Fahad Mazaed Alotaibi, Muhammad Adnan Khan, Muhammad Waqas, Nouh Elmitwally

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The abnormality of haemoglobin in the human body is the fundamental cause of thalassemia disease. Thalassemia is considered a common genetic blood condition that has received extensive investigation in medical research globally. Likely, inherited disorders will be passed down to children from their parents. If both parents are beta Thalassemia carriers, 25% of their children will have intermediate or major beta thalassemia, which is fatal. An efficient method of beta thalassemia is prenatal screening after couples have received counselling. Identifying Thalassemia carriers involves a costly, time-consuming, and specialized test using quantifiable blood features. However, cost-effective and speedy screening methods must be developed to address this issue. The demise rate due to thalassemia development is outstandingly high around the globe. The passing rate due to thalassemia development can be reduced by following the proper procedure early; otherwise, it significantly impacts the body. A machine learning-based late fusion model proposes the detection of beta-thalassemia carriers by analyzing red blood cells. This study applied the late fusion technique to employ four machine learning algorithms. For identifying the beta thalassemia carriers, Logistics Regression, Naive Bayes, Decision Tree, and Neural Network, they have achieved an accuracy of 94.01%, 93.15%, 97.93%, and 98.07%, respectively, by using the features-based dataset. The late fusion-based ML model achieved an overall accuracy of 96% for detecting beta-thalassemia carriers. The proposed late fusion model performs better than previously published approaches regarding efficiency, reliability, and precision.
    Original languageEnglish
    Article number4468842
    JournalAdvances in Fuzzy Systems
    Volume2024
    DOIs
    Publication statusPublished (VoR) - 25 Mar 2024

    Fingerprint

    Dive into the research topics of 'Fuzzy-Based Fusion Model for β-Thalassemia Carriers Prediction Using Machine Learning Technique'. Together they form a unique fingerprint.

    Cite this