Improving the generalisation of genetic programming models with evaluation time and asynchronous parallel computing

Aliyu Sambo*, R. Muhammad Atif Azad, Yevgeniya Kovalchuk, Vivek Indramohan, Hanifa Shah

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Original languageEnglish
    Title of host publicationGECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion
    PublisherAssociation for Computing Machinery
    Pages265-266
    Number of pages2
    ISBN (Electronic)9781450383516
    DOIs
    Publication statusPublished (VoR) - 7 Jul 2021
    Event2021 Genetic and Evolutionary Computation Conference, GECCO 2021 - Virtual, Online, France
    Duration: 10 Jul 202114 Jul 2021

    Publication series

    NameGECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion

    Conference

    Conference2021 Genetic and Evolutionary Computation Conference, GECCO 2021
    Country/TerritoryFrance
    CityVirtual, Online
    Period10/07/2114/07/21

    Funding

    PhD Classic - BCU.

    Keywords

    • complexity
    • generalisation
    • genetic programming
    • regression

    Fingerprint

    Dive into the research topics of 'Improving the generalisation of genetic programming models with evaluation time and asynchronous parallel computing'. Together they form a unique fingerprint.

    Cite this