k-NN Embedding Stability for word2vec Hyper-Parametrisation in Scientific Text

Amna Dridi*, Mohamed Medhat Gaber, R. Muhammad Atif Azad, Jagdev Bhogal

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    7 Citations (SciVal)
    Original languageEnglish
    Title of host publicationDiscovery Science - 21st International Conference, DS 2018, Proceedings
    EditorsMichelangelo Ceci, Larisa Soldatova, Joaquin Vanschoren, George Papadopoulos
    PublisherSpringer Verlag
    Pages328-343
    Number of pages16
    ISBN (Print)9783030017705
    DOIs
    Publication statusPublished (VoR) - 2018
    Event21st International Conference on Discovery Science, DS 2018 - Limassol, Cyprus
    Duration: 29 Oct 201831 Oct 2018

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume11198 LNAI
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Conference

    Conference21st International Conference on Discovery Science, DS 2018
    Country/TerritoryCyprus
    CityLimassol
    Period29/10/1831/10/18

    Keywords

    • ACM hierarchy
    • Hyper-parameters
    • NIPS
    • Skip-gram
    • Wikipedia outline
    • Word embedding
    • Word2vec
    • k-NN stability

    Fingerprint

    Dive into the research topics of 'k-NN Embedding Stability for word2vec Hyper-Parametrisation in Scientific Text'. Together they form a unique fingerprint.

    Cite this