Remaining useful life prediction of rolling element bearings using supervised machine learning

Xiaochuan Li*, Faris Elasha, Suliman Shanbr, David Mba

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    28 Citations (SciVal)
    Original languageEnglish
    Article number2705
    JournalEnergies
    Volume12
    Issue number14
    DOIs
    Publication statusPublished (VoR) - 2019

    Keywords

    • Artificial neural network
    • Prognostics
    • Regression model
    • Remaining useful life
    • Rolling element bearing
    • Vibration measurement

    Fingerprint

    Dive into the research topics of 'Remaining useful life prediction of rolling element bearings using supervised machine learning'. Together they form a unique fingerprint.

    Cite this