SegCrop: Segmentation-based Dynamic Cropping of Endoscopic Videos to Address Label Leakage in Surgical Tool Detection

Adnan Qayyum, Muhammad Bilal*, Junaid Qadir, Massimo Caputo, Hunaid Vohra, Taofeek Akinosho, Ilhem Berrou, Faatihah Niyi-Odumosu, Michael Loizou, Anuoluwapo Ajayi, Sofiat Abioye

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    1 Citation (SciVal)
    Original languageEnglish
    Title of host publication2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
    PublisherIEEE Computer Society
    ISBN (Electronic)9781665473583
    DOIs
    Publication statusPublished (VoR) - 2023
    Event20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 - Cartagena, Colombia
    Duration: 18 Apr 202321 Apr 2023

    Publication series

    NameProceedings - International Symposium on Biomedical Imaging
    Volume2023-April
    ISSN (Print)1945-7928
    ISSN (Electronic)1945-8452

    Conference

    Conference20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
    Country/TerritoryColombia
    CityCartagena
    Period18/04/2321/04/23

    Keywords

    • Explainable AI
    • Image Segmentation
    • Robust ML
    • Surgical Data Science
    • Surgical Tool Detection

    Fingerprint

    Dive into the research topics of 'SegCrop: Segmentation-based Dynamic Cropping of Endoscopic Videos to Address Label Leakage in Surgical Tool Detection'. Together they form a unique fingerprint.

    Cite this