Semantic Segmentation of the Lung to Examine the Effect of COVID-19 Using UNET Model

Oluwatobi Akinlade, Edlira Vakaj*, Amna Dridi, Sanju Tiwari, Fernando Ortiz-Rodriguez

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Original languageEnglish
    Title of host publicationApplied Machine Learning and Data Analytics - 5th International Conference, AMLDA 2022, Revised Selected Papers
    EditorsM.A. Jabbar, Fernando Ortiz-Rodríguez, Sanju Tiwari, Patrick Siarry
    PublisherSpringer Science and Business Media Deutschland GmbH
    Pages52-63
    Number of pages12
    ISBN (Print)9783031342219
    DOIs
    Publication statusPublished (VoR) - 2023
    Event5th International Conference on Applied Machine Learning and Data Analytics, AMLDA 2022 - Reynosa, Mexico
    Duration: 22 Dec 202223 Dec 2022

    Publication series

    NameCommunications in Computer and Information Science
    Volume1818 CCIS
    ISSN (Print)1865-0929
    ISSN (Electronic)1865-0937

    Conference

    Conference5th International Conference on Applied Machine Learning and Data Analytics, AMLDA 2022
    Country/TerritoryMexico
    CityReynosa
    Period22/12/2223/12/22

    Keywords

    • CNN
    • Covid-19
    • Medical Imaging
    • Semantic Segmentation
    • Unet Model

    Fingerprint

    Dive into the research topics of 'Semantic Segmentation of the Lung to Examine the Effect of COVID-19 Using UNET Model'. Together they form a unique fingerprint.

    Cite this