The Impact of Feature Vector Length on Activity Recognition Accuracy on Mobile Phone

S. Bashir, Daniel Doolan, Andrei Petrovski

    Research output: Chapter in Book/Report/Conference proceedingChapter

    5 Citations (Scopus)
    Original languageEnglish
    Title of host publicationProceedings of the World Congress on Engineering 2015
    EditorsS. I. Ao, Len Gelman, Alexander M. Korsunsky, S. I. Ao, David W.L. Hukins, Andrew Hunter, S. I. Ao, Len Gelman
    PublisherWorld Congress on Engineering
    Pages332-337
    Number of pages6
    ISBN (Electronic)9789881925343
    ISBN (Print)978-988-19253-4-3
    Publication statusPublished (VoR) - 2015
    Event2015 World Congress on Engineering, WCE 2015 - London, United Kingdom
    Duration: 1 Jul 20153 Jul 2015

    Publication series

    NameLecture Notes in Engineering and Computer Science
    Volume2217
    ISSN (Print)2078-0958

    Conference

    Conference2015 World Congress on Engineering, WCE 2015
    Country/TerritoryUnited Kingdom
    CityLondon
    Period1/07/153/07/15

    Keywords

    • activity recognition
    • smartphone
    • accelerometer sensor data
    • machine learning algorithms.

    Fingerprint

    Dive into the research topics of 'The Impact of Feature Vector Length on Activity Recognition Accuracy on Mobile Phone'. Together they form a unique fingerprint.

    Cite this